Chapter 1 - Notation and Review of Newton’s Laws
(Part 1)

A. Space and Vectors:
* Unit vectors, vector components and Cartesian orthonormal basis
* Dot product and cross product

B. Time derivatives
* Dot notation

® Vector expressions
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List of Examples and Proofs

Unit vector notation

Vector component proof

Dot product example

Cross product example

Dot notation for time derivatives

Differentiating a vector in Cartesian coordinates
Vector time derivative example

NoasEWWNh =
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A. Space and Vectors
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Unit Vectors and Orthonormal Basis

Unit vector = vector with unit length

Orthonormal Basis = Set of unit vectors that are mutually
perpendicular and span the given space

Cartesian Orthonormal Basis defines (x,y,z) Cartesian
Coordinate system:

I points along x axis

Y
]‘J_.f N { points along y axis
P k points along z axis

Z
Unit vectors wear a “hat”: i, j, k
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Vector Components

The vector components of a vector A along the lA f k axes are
defined as A,, A, and A,

A=Aj+Aj+Ak

The position vector r is a special case, since its components
are often just written as r = xi + yj + zk rather than
r=ri+ rJ + erA(
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Alternate Unit Vector Notation

A

Instead of writing the unit vectors as zA ]A k, sometimes it is convenient

to write them as X, y, Z or €;, é,, ;3. These notations are equivalent.

; A=Ai+Aj+Ak

[ b e
H “ 5 «. ) A=AR+AF+A2

For example, the following are equivalent ways of writing the
same vector:
r=i+2j—3k

r=X+2y— 3z

r:é1+262—3é3

PHYS 342 Analytical Mechanics - Chapter 1 6



€; notation

é,
| '61 l‘=l”lel+l”2€2+l”3e3

Advantage of the €; notation is that summation notation can
be used. For example, the vector r can be written as a sum of

the products of the vector components r; with the unit vectors

e.

l
=1
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Question

Each of the following equations contains a notational
error. Find it.

X y
B=BX+B,y
C=A+B
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Vector Notation

Magnitude of vector:

3
|r|=r=\/r3+ry2+rzz=\2ri2

Notation Summary:

Note: vector symbols must be
either bolded or have an arrow

/ over them
Vector position: r or r
Unit vector (wears a hat): r
Vector magnitude (scalar): |r|or r
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Dot Product

3 3
Given 2 vectors: A= ZAiéi and B = ZBiéi
i=1

The dot product or “inner” product or “scalar” product is:

A-B=AB +AB, +AB

3 A
= Zl A;B; % .

B

A-B=ABcos0
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Dot Product of Orthonormal Unit Vectors

The following relationship defines a system of orthonormal unit vectors

é;and e;:
. 1L ifi=j
where §;; is the Kronecker delta symbol: 5 = 0 if it
if 1]
J
When a unit vector is “dotted” with itself, e, | & | e,
we get 1. For example, €, -¢é; = 1. When -

it is dotted with a different (perpendicular)
unit vector we get zero. For example, i

Q>
'S
o
-
(@)

e e, =0. e | o | o | 1
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Properties of the Kronecker Delta Symbol

The Kronecker delta symbol is:

It is easy to show the following:
N

2. <5sz]'

j=1

if =]
0 if i#]

Notice: the Aj inside the

sum switches to an A; on
r.h.s. of the equation

This is true because all the §;; values with i # j are zero, so

the only contribution to the sum is when j = i.
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Use Dot Product to Extract Vector Components

Given a set of unit vectors €; defining a coordinate system, the

vector components A; along each coordinate axis are given by

Try to use the properties of the Kronecker delta symbol to
prove this result. The solution is on the next slide.
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Proof that A, = A - ¢,

Consider the following:

Expand the vector A on the € basis:

Bring €; into the sum:

Substitute ¢; - €; = §;;

From property of Kronecker deltas:
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More Dot Product Properties

Given any unit vector i1 and vector A, the A
vector component A, in the direction
defined by i1 is given by A, =A -1

:>.

The dot product of any vector with itself is the square of its

magnitude:
J A-A=A°

If two vectors A and B satisfy A - B = 0, then the the vectors are
perpendicular (i.e. orthogonal).
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Dot Product Example

Find the angle between the following two vectors: oA
A=2i+3j andB=3i+]j

Solution:
We'll use the result that A - B = AB cos 6.

Calculate the dot product: A-B =AB, +A B,
=(2)3)+03)D) =9

Next, find the magnitudes of each vector: A =, /A7 + A =+4/13

H:

B=./B;+B;=1/10
Finally, solve for the angle 6

0 = cos™! (ﬁ) = cos™! 0 =38
AB J/T3Y10
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Cross Product

3 3
Given 2 vectors: A=) Ag and B=) Bg
i=1 ]

The cross product is C = A X B where the vector components are

C,=A,B,—AB, i3k
C,=AB,—AB. or, equivalently C=det [A, A, A
BX

C.=AB,—AB,

The cross product is a vector that is always C
perpendicular to the plane defined by vectors A

A and B Y 0

The magnitude of the cross product A and B is
|AXB|=ABsinf
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Cross Product

The determinant of the 3 X 3 matrix can be written as the sum of three
2 X 2 determinants like this:

> >

C = det

o -
%w &<> Qi 0 >

0

0O d Ay AZ 0 d [Ax AZ
= 1det — Jaet
B, B, B, B,

kdet [0
t
+ Kde B, B,

=1i(A,B,—A,B) — j(A,B,—A,B,) + k(A,B,— A,B,)
This expression is equivalent to the result on the previous slide
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Cross Product Example

Y
Find the cross product C = A X B of the following two T A
vectors:A=2i+3j andB=§+j+lA( 1
_ \Q
Solution: _ ~  _
i ]k
C=det |A, A, A |=1iA,B.—AB)-jAB. —AB)+kA,B,~AB)
B, B, B,
i jk
C=det|r 3 o|l=i3-1-0-D)—j2-1-0-1)+k2-1-3-1)
1 1 1 A
- - =3i-2j-k
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Dot Product and Cross Product Properties

A, B and C are vectors. The following are true:

AXB=—-BXxA
AXB+C)=AXB+AXC
A-BxC)=AxB):-C

AXBxC)=A-CB-(A-B)C

A-(AxB)=0 forany A andB
AXA=0
A-A=|A)
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B. Time Derivatives
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Time Derivatives

We use the dot notation for time derivatives. The number of
dots represents the number of derivatives

Examples:
. L o dx
velocity (1st derivative): k==
. L d%x
acceleration (2nd derivative): i = —7 = a
. L d’
jerk (3nd derivative): g i
dr3
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Differentiating a Vector in Cartesian Coordinates

Because Cartesian unit vectors have fixed directions, we can
treat them as constants when differentiating a vector:

Example: Find the vector velocity by differentiating the position

vector.

dr
dt

d . . .
= p [)CX + vy + ZZ] dx dy
f We write x = —, y = —, etc
dt dt

r= XX+ yy+7Z

V=vX+ny+vzZ
‘1 We now define v, = X, v, =, etc

V=r
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Time Derivatives

The product rule for differentiation applies to dot products and
cross products:

d , :

—(A-B)=A-B+A-B

dt Warning!! Don’t overlook the dots above
d the vectors. They can be easy to miss.

E(AxB) —AXxB+AxB
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Show: %(A.B)zA.B+A.B

Solution:

Write the dot product as sum

d d
—(AB)=—) AB

Z (A;B; + AB;)

=Y AB+ ) AB,

=A-B+A-B
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Vector Time Derivative Example

d
Find the time derivative — |r |2
dt
Solution:
d d
—|rP==r-r
dt dt
=r-r+r-r
=2r-r
=2v-r

If the velocity vector is perpendicular to the position
vector (as in uniform circular motion), then the derivative
IS zero.
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