

Chapter 1 - Notation and Review of Newton's Laws

(Part 1)

A. Space and Vectors:

- Unit vectors, vector components and Cartesian orthonormal basis
- Dot product and cross product

B. Time derivatives

- Dot notation
- Vector expressions

List of Examples and Proofs

1. Unit vector notation
2. Vector component proof
3. Dot product example
4. Cross product example
5. Dot notation for time derivatives
6. Differentiating a vector in Cartesian coordinates
7. Vector time derivative example

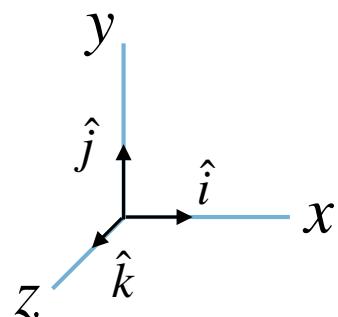
A. Space and Vectors

Unit Vectors and Orthonormal Basis

Unit vector = vector with unit length

Orthonormal Basis = Set of unit vectors that are mutually perpendicular and span the given space

Cartesian Orthonormal Basis defines (x,y,z) Cartesian Coordinate system:

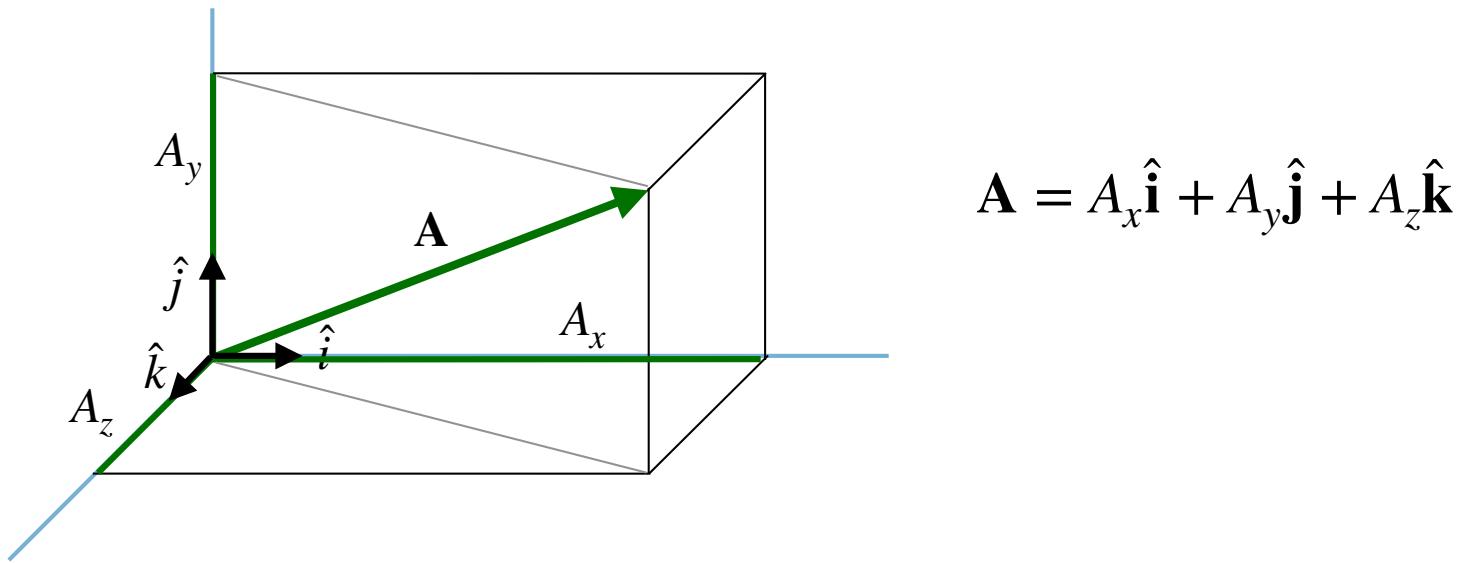


\hat{i} points along x axis
 \hat{j} points along y axis
 \hat{k} points along z axis

Unit vectors wear a "hat": $\hat{i}, \hat{j}, \hat{k}$

Vector Components

The **vector components** of a vector \mathbf{A} along the $\hat{i}, \hat{j}, \hat{k}$ axes are defined as A_x, A_y and A_z :



The **position vector** \mathbf{r} is a special case, since its components are often just written as $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ rather than $\mathbf{r} = r_x \hat{\mathbf{i}} + r_y \hat{\mathbf{j}} + r_z \hat{\mathbf{k}}$

Alternate Unit Vector Notation

Instead of writing the unit vectors as $\hat{i}, \hat{j}, \hat{k}$, sometimes it is convenient to write them as $\hat{x}, \hat{y}, \hat{z}$ or $\hat{e}_1, \hat{e}_2, \hat{e}_3$. These notations are equivalent.

 \hat{i} \hat{x} \hat{e}_1

$$\mathbf{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

 \hat{j} \hat{y} \hat{e}_2

$$\mathbf{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

 \hat{k} \hat{z} \hat{e}_3

$$\mathbf{A} = A_1 \hat{e}_1 + A_2 \hat{e}_2 + A_3 \hat{e}_3$$

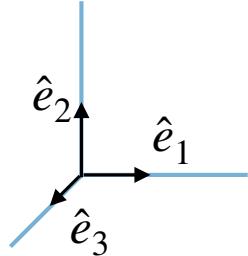
For example, the following are equivalent ways of writing the same vector:

$$\mathbf{r} = \hat{i} + 2\hat{j} - 3\hat{k}$$

$$\mathbf{r} = \hat{x} + 2\hat{y} - 3\hat{z}$$

$$\mathbf{r} = \hat{e}_1 + 2\hat{e}_2 - 3\hat{e}_3$$

$\hat{\mathbf{e}}_i$ notation



$$\mathbf{r} = r_1 \hat{\mathbf{e}}_1 + r_2 \hat{\mathbf{e}}_2 + r_3 \hat{\mathbf{e}}_3$$

Advantage of the $\hat{\mathbf{e}}_i$ notation is that **summation notation** can be used. For example, the vector \mathbf{r} can be written as a sum of the products of the vector components r_i with the unit vectors $\hat{\mathbf{e}}_i$

$$\mathbf{r} = \sum_{i=1}^3 r_i \hat{\mathbf{e}}_i$$

Question

Each of the following equations contains a notational error. Find it.

$$A = A_x \hat{x} + A_y \hat{y}$$

$$A = \vec{A}_x \hat{x} + \vec{A}_y \hat{y}$$

$$\mathbf{B} = B_x \vec{x} + B_y \vec{y}$$

$$C = \vec{A} + \vec{B}$$

Vector Notation

Magnitude of vector:

$$|\mathbf{r}| = r = \sqrt{r_x^2 + r_y^2 + r_z^2} = \sqrt{\sum_{i=1}^3 r_i^2}$$

Notation Summary:

Vector position:

\mathbf{r} or \vec{r}
 $\hat{\mathbf{r}}$

Unit vector (wears a hat):

Vector magnitude (scalar): $|\mathbf{r}|$ or r

Note: vector symbols must be either **bolded** or have an arrow over them

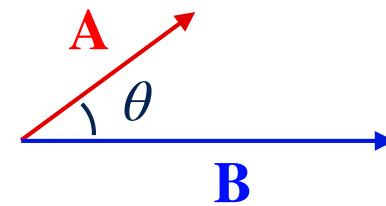
Dot Product

Given 2 vectors:

$$\mathbf{A} = \sum_{i=1}^3 A_i \hat{\mathbf{e}}_i \quad \text{and} \quad \mathbf{B} = \sum_{i=1}^3 B_i \hat{\mathbf{e}}_i$$

The **dot product** or “inner” product or “scalar” product is:

$$\begin{aligned}\mathbf{A} \cdot \mathbf{B} &= A_x B_x + A_y B_y + A_z B_z \\ &= \sum_{i=1}^3 A_i B_i\end{aligned}$$



$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$

Dot Product of Orthonormal Unit Vectors

The following relationship defines a system of orthonormal unit vectors \hat{e}_i and \hat{e}_j :

$$\hat{e}_i \cdot \hat{e}_j = \delta_{ij}$$

where δ_{ij} is the **Kronecker delta** symbol:

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

When a unit vector is “dotted” with itself, we get 1. For example, $\hat{e}_1 \cdot \hat{e}_1 = 1$. When it is dotted with a different (perpendicular) unit vector we get zero. For example, $\hat{e}_1 \cdot \hat{e}_2 = 0$.

	\hat{e}_1	\hat{e}_2	\hat{e}_3
\hat{e}_1	1	0	0
\hat{e}_2	0	1	0
\hat{e}_3	0	0	1

Properties of the Kronecker Delta Symbol

The Kronecker delta symbol is: $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

It is easy to show the following:

$$\sum_{j=1}^N (\delta_{ij} A_j) = A_i$$

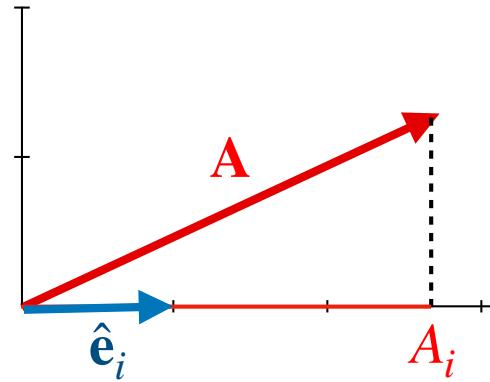
Notice: the A_j inside the sum switches to an A_i on r.h.s. of the equation

This is true because all the δ_{ij} values with $i \neq j$ are zero, so the only contribution to the sum is when $j = i$.

Use Dot Product to Extract Vector Components

Given a set of unit vectors $\hat{\mathbf{e}}_i$ defining a coordinate system, the vector components A_i along each coordinate axis are given by

$$A_i = \mathbf{A} \cdot \hat{\mathbf{e}}_i$$



Try to use the properties of the Kronecker delta symbol to prove this result. The solution is on the next slide.

Proof that $A_i = \mathbf{A} \cdot \hat{\mathbf{e}}_i$

Consider the following:

Expand the vector \mathbf{A} on the $\hat{\mathbf{e}}_j$ basis:

Bring $\hat{\mathbf{e}}_i$ into the sum:

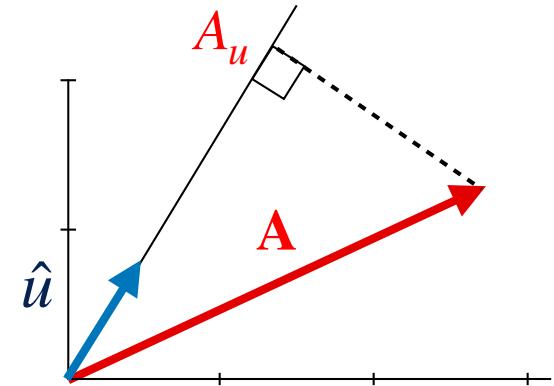
Substitute $\hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_i = \delta_{ij}$

From property of Kronecker deltas:

$$\begin{aligned}\mathbf{A} \cdot \hat{\mathbf{e}}_i &= \left(\sum_{j=1}^3 A_j \hat{\mathbf{e}}_j \right) \cdot \hat{\mathbf{e}}_i \\ &= \sum_{j=1}^3 (A_j \hat{\mathbf{e}}_j \cdot \hat{\mathbf{e}}_i) \\ &= \sum_{j=1}^3 A_j \delta_{ij} \\ &= A_i \quad \checkmark\end{aligned}$$

More Dot Product Properties

Given **any** unit vector \hat{u} and vector \mathbf{A} , the vector component A_u in the direction defined by \hat{u} is given by $A_u = \mathbf{A} \cdot \hat{u}$



The dot product of any vector with itself is the square of its magnitude:

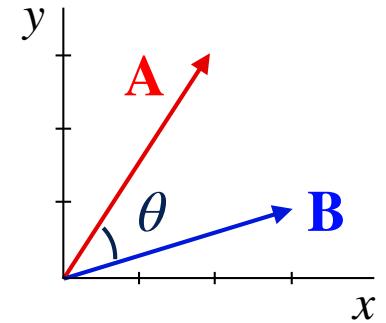
$$\mathbf{A} \cdot \mathbf{A} = A^2$$

If two vectors \mathbf{A} and \mathbf{B} satisfy $\mathbf{A} \cdot \mathbf{B} = 0$, then the the vectors are perpendicular (i.e. orthogonal).

Dot Product Example

Find the angle between the following two vectors:

$$\mathbf{A} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} \text{ and } \mathbf{B} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}}$$



Solution:

We'll use the result that $\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$.

$$\begin{aligned} \text{Calculate the dot product: } \mathbf{A} \cdot \mathbf{B} &= A_x B_x + A_y B_y \\ &= (2)(3) + (3)(1) = 9 \end{aligned}$$

$$\begin{aligned} \text{Next, find the magnitudes of each vector: } A &= \sqrt{A_x^2 + A_y^2} = \sqrt{13} \\ B &= \sqrt{B_x^2 + B_y^2} = \sqrt{10} \end{aligned}$$

Finally, solve for the angle θ

$$\theta = \cos^{-1} \left(\frac{\mathbf{A} \cdot \mathbf{B}}{AB} \right) = \cos^{-1} \left(\frac{9}{\sqrt{13}\sqrt{10}} \right) = 38^\circ \quad \checkmark$$

Cross Product

Given 2 vectors:

$$\mathbf{A} = \sum_{i=1}^3 A_i \hat{\mathbf{e}}_i \quad \text{and} \quad \mathbf{B} = \sum_{i=1}^3 B_i \hat{\mathbf{e}}_i$$

The **cross product** is $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ where the vector components are

$$C_x = A_y B_z - A_z B_y$$

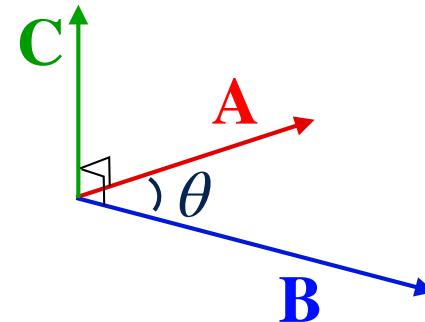
$$C_y = A_z B_x - A_x B_z$$

$$C_z = A_x B_y - A_y B_x$$

or, equivalently

$$\mathbf{C} = \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{bmatrix}$$

The cross product is a vector that is always perpendicular to the plane defined by vectors **A** and **B**



The **magnitude** of the cross product **A** and **B** is

$$|\mathbf{A} \times \mathbf{B}| = AB \sin \theta$$

Cross Product

The determinant of the 3×3 matrix can be written as the sum of three 2×2 determinants like this:

$$\begin{aligned}\mathbf{C} &= \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{bmatrix} \\ &= \hat{\mathbf{i}} \det \begin{bmatrix} A_y & A_z \\ B_y & B_z \end{bmatrix} - \hat{\mathbf{j}} \det \begin{bmatrix} A_x & A_z \\ B_x & B_z \end{bmatrix} + \hat{\mathbf{k}} \det \begin{bmatrix} A_x & A_y \\ B_x & B_y \end{bmatrix} \\ &= \hat{\mathbf{i}}(A_y B_z - A_z B_y) - \hat{\mathbf{j}}(A_x B_z - A_z B_x) + \hat{\mathbf{k}}(A_x B_y - A_y B_x)\end{aligned}$$

This expression is equivalent to the result on the previous slide

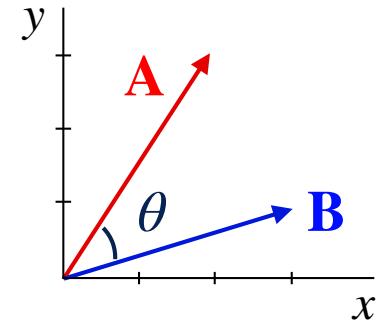
Cross Product Example

Find the cross product $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ of the following two vectors: $\mathbf{A} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ and $\mathbf{B} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$

Solution:

$$\mathbf{C} = \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{bmatrix} = \hat{\mathbf{i}}(A_y B_z - A_z B_y) - \hat{\mathbf{j}}(A_x B_z - A_z B_x) + \hat{\mathbf{k}}(A_x B_y - A_y B_x)$$

$$\begin{aligned} \mathbf{C} = \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{bmatrix} &= \hat{\mathbf{i}}(3 \cdot 1 - 0 \cdot 1) - \hat{\mathbf{j}}(2 \cdot 1 - 0 \cdot 1) + \hat{\mathbf{k}}(2 \cdot 1 - 3 \cdot 1) \\ &= 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - \hat{\mathbf{k}} \quad \checkmark \end{aligned}$$



Dot Product and Cross Product Properties

\mathbf{A} , \mathbf{B} and \mathbf{C} are vectors. The following are true:

$$\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$$

$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$

$$\mathbf{A} \cdot (\mathbf{A} \times \mathbf{B}) = 0 \quad \text{for any } \mathbf{A} \text{ and } \mathbf{B}$$

$$\mathbf{A} \times \mathbf{A} = 0$$

$$\mathbf{A} \cdot \mathbf{A} = |\mathbf{A}|^2$$

B. Time Derivatives

Time Derivatives

We use the **dot notation** for time derivatives. The number of dots represents the number of derivatives

Examples:

velocity (1st derivative): $\dot{x} = \frac{dx}{dt} = v$

acceleration (2nd derivative): $\ddot{x} = \frac{d^2x}{dt^2} = a$

jerk (3rd derivative): $\dddot{x} = \frac{d^3x}{dt^3}$

Differentiating a Vector in Cartesian Coordinates

Because Cartesian unit vectors have fixed directions, we can treat them as constants when differentiating a vector:

Example: Find the vector velocity by differentiating the position vector.

$$\frac{d\mathbf{r}}{dt} = \frac{d}{dt} [x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}]$$

$$\dot{\mathbf{r}} = \dot{x}\hat{\mathbf{x}} + \dot{y}\hat{\mathbf{y}} + \dot{z}\hat{\mathbf{z}}$$

We write $\dot{x} = \frac{dx}{dt}$, $\dot{y} = \frac{dy}{dt}$, etc

$$\mathbf{v} = v_x\hat{\mathbf{x}} + v_y\hat{\mathbf{y}} + v_z\hat{\mathbf{z}}$$

$$\mathbf{v} = \dot{\mathbf{r}}$$

We now define $v_x = \dot{x}$, $v_y = \dot{y}$, etc

Time Derivatives

The product rule for differentiation applies to dot products and cross products:

$$\frac{d}{dt} (\mathbf{A} \cdot \mathbf{B}) = \dot{\mathbf{A}} \cdot \mathbf{B} + \mathbf{A} \cdot \dot{\mathbf{B}}$$

$$\frac{d}{dt} (\mathbf{A} \times \mathbf{B}) = \dot{\mathbf{A}} \times \mathbf{B} + \mathbf{A} \times \dot{\mathbf{B}}$$

Warning!! Don't overlook the dots above the vectors. They can be easy to miss.

Show: $\frac{d}{dt} (\mathbf{A} \cdot \mathbf{B}) = \dot{\mathbf{A}} \cdot \mathbf{B} + \mathbf{A} \cdot \dot{\mathbf{B}}$

Solution:

Write the dot product as sum

$$\begin{aligned}\frac{d}{dt} (\mathbf{A} \cdot \mathbf{B}) &= \frac{d}{dt} \sum A_i B_i \\ &= \sum (\dot{A}_i B_i + A_i \dot{B}_i) \\ &= \sum \dot{A}_i B_i + \sum A_i \dot{B}_i \\ &= \dot{\mathbf{A}} \cdot \mathbf{B} + \mathbf{A} \cdot \dot{\mathbf{B}} \quad \checkmark\end{aligned}$$

Vector Time Derivative Example

Find the time derivative $\frac{d}{dt} |\mathbf{r}|^2$

Solution:

$$\begin{aligned}\frac{d}{dt} |\mathbf{r}|^2 &= \frac{d}{dt} \mathbf{r} \cdot \mathbf{r} \\ &= \dot{\mathbf{r}} \cdot \mathbf{r} + \mathbf{r} \cdot \dot{\mathbf{r}} \\ &= 2\dot{\mathbf{r}} \cdot \mathbf{r} \\ &= 2\mathbf{v} \cdot \mathbf{r}\end{aligned}$$

If the velocity vector is perpendicular to the position vector (as in uniform circular motion), then the derivative is zero.